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Abstract

The 15-years' worth of hydrogen Lyman-ot observations of cometary comae obtained with

the International Ultraviolet Explorer (IUE) satellite had gone generally unanalyzed because of two

main modeling complications. First, the inner comae of many bright (gas productive) comets are

often optically thick to solar Lyman-ct radiation. Second, even in the case of a small comet (low

gas production) the large IUE aperture is quite small as compared with the immense size of the

hydrogen coma, so an accurate model which properly accounts for the spatial distribution of the

coma is required to invert the inferred brightnesses to column densities and finally to H atom

production rates. Our Monte Carlo particle trajectory model (MCPTM), which for the first time

provides the realistic full phase space distribution of H atoms throughout the coma has been used

as the basis for the analysis of IUE observations of the inner coma. The MCPTM includes the

effects of the vectorial ejection of the H atoms upon dissociation of their parent species (H20 and

OH) and of their partial collisional thermalization. Both of these effects are crucial to characterize

the velocity distribution of the H atoms. This combination of the MCPTM and spherical radiative

transfer code had already been shown to be successful in understanding the moderately optically

thick coma of comet P/Giacobini-Zinner and the coma of comet Halley that varied from being

slightly to very optically thick. Both of these comets were observed during solar minimum

conditions. Solar activity affects both the photochemistry of water and the solar Lyman-a radiation

flux. The overall plan of this program here was to concentrate on comets observed by IUE at other

time during the solar cycle, most importantly during the two solar maxima of 1980 and 1990.

Described herein are the work performed and the results obtained.
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I. Introduction

There have been many studies of the process of photodissociation and photoionization of

water by solar ultraviolet radiation which provide information about the overall rate and the various

branching ratios (Festou 1981; Wu and Chen 1993; Budzien, Feldman and Festou 1994). Such

information is not only centrally important in the study of comets, but is also important for a wide

range of planetary atmosphere studies (Huebner, Lyon, and Keady 1992). Oppenheimer and

Downey (1980) noted the importance of the variation of solar Lyman-ct to the dissociation of

water, and concluded that the overall rate could vary by up to a factor of two with solar activity. In

addition, the ratios between the ionization, H + OH, and H z + O( j D) branches should also vary

with solar activity. Because of this the water lifetime used both in the interpretation of OH and H

observations varies over the solar cycle. We have undertaken the task to test this variation by

comparing the IUE observations of the major water photodissociation products (i.e., H and OH)

and the resultant water production rates between solar minimum and solar maximum with models

calculations which account for the variations in lifetime and branching ratios.

Recently Budzien et al. (1994) have systematically studied the effect of solar activity

variations on the photochemistry of water as seen in the observations of OH by IUE in a number of

comets. They have re-evaluated the effect of the variable solar UV on the lifetime of water and on

the branching ratios of the major dissociation and ionization branches. Their detailed results are

parametrized on the basis of measured solar activity indices (e.g., F10.7-cm and He 10,838,_) and

can produce a continuous distribution of results. It is most interesting to note that those results

assembled by Combi & Smyth (1988b) and Combi (1989; see Combi and Feldman 1993 for a

discussion) for typical solar maximum and minimum cases are consistent with the comparable

limiting cases found more recently by Budzien et al. Therefore, the analyses of several sets of

solar minimum results published in a series of papers on various emissions of water

photodissociation products in comets P/Giacobini-Zinner and P/Halley by our extended group are

reasonably self-consistent with the approach of Budzien et al. These include H Ly-a from Pioneer

Venus in Halley by Smyth, Combi, and Stewart (1991) and Smyth, Marconi, & Combi (1995),



HI-Ly-0tfrom IUE in cometsP/Giacobini-ZinnerandHalleyby CombiandFeldman(1992&

1993),H Balmer-afrom groundbasedFabry-Perotmeasurmentsby Smythet al (1994),OH from

IUE in cometHalleyby Combi,Bos,andSmyth(1993),and0( 1D) in HalleyagainfromFabry-

Perotmeasurementsby Smythet al. (1995).

An important part of the problem in understanding the emission of Lyman-a from a comet is

to know the Lyman-a flux from the sun and the shape of the line profile. The solar Lyman-et line

is on the order of 1 A wide, which is very broad as compared with the portion of the line seen by

hydrogen atoms in coma of a comet at some point in its orbit ( < 0.2 _, from a range of about + 20

km sl). To complicate the situation, a typical comet is in a highly elliptical orbit that causes the

radiation scattered by the cometary H atoms to be Doppler shifted by as much as another + 0.2 _,

from the center of the line. Therefore the emission brightness of cometary hydrogen is determined

largely by the flux at or near the center of the line rather than by the integrated line flux which is

typically measured by instruments on satellites like SME and UARS, or can be estimated from

other solar activity indices such as the F10.7-cm or He-10830_, fluxes. The integrated line flux is

known to vary on long time scales with the 11-year solar cycle and on short time scales with solar

rotation. The solar line profile has shown a self-absorption in the center that has been measured

(Lemaire et al. 1978) during solar minimum conditions but there has been considerable controversy

over whether the shape of the line changes with the integrated flux.

Direct solar observations have indicated that the line-center flux may vary more than

integrated flux based on a reconstruction of a full solar disk spectrum from a number of smaller

scale observations (Lean 1987). That is, when the integrated flux is large, the central absorption

fills in. However, years of spacecraft observations of the interstellar medium both by Pioneer

Venus (Ajello et al. 1987) and Voyager (Shemansky and Judge 1982; Shemansky 1991) are

consistent with little or no variation of the ratio of the line-center to integrated flux.

This question is of considerable importance for various problems in solar physics and earth

and planetary science for which the accurate knowledge of the solar Lyman-cx flux (and especially

the level at line center) is critical. All planet atmospheres are essentially at a zero Doppler shift
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withrespectto thesolarline sincetheyarein circularorbits. Thecometsobserved by IUE cover a

wide range of Doppler shifts because of their highly elliptical orbits. To this point in time in our

large scale coma modeling (Combi & Smyth 1988b; Smyth, Combi and Stewart 1991) and in the

radiative transfer calculations (Combi & Feldman 1992 & 1993) we have used the average quite-

sun full-disk H Lyman-et profiles determined by Lemaire et al. (1978), because the comets were all

observed at or near solar minimum conditions. However, work by Fontenla, Reichmann and

Tandberg-Hanssen (1988) who observed the Ly-_t profile in various local regions of the sun

during various levels of activity found that the shape of the profile changes dramatically. McGrath

and Clarke (1992), in an analysis of 14 years of IUE observations of HI Ly-o_ from Saturn,

compared the observed nominal brightness with that of Jupiter. Interestingly, they found that the

Saturn and Jupiter observations scaled quite well with one another except during the 1980 solar

maximum period when the Saturn brightness was nearly 40% higher than Jupiter. Because the

Saturn brightness is determined by the solar Ly-ot line center brightness, whereas the Jupiter

brightness is more indicative of the entire line, the simplest explanation is that the line-center of the

solar Ly-ot line did not have a central reversal during the 1980 solar maximum period.

This report describes the analysis of the sets of IUE observations of H Ly-ct in two bright

comets observed during the two most recent solar maximum periods. The goals were: (1) to test

the combination of the hybrid H coma and spherical radiative transfer models (first applied to the

six days of observations of comet P/Giacobini-Zinner and on the 28 days of Halley data), in order

to compare the inferred water production rates with published observations of OH, (2) to test

observable effects of solar activity dependent photochemistry on the H coma, and finally (3) to see

if the comet observations yield information about the variation of the solar Ly-tx line profile shape

over the solar cycle.

We present here the status as of the end of our project on the analysis of observations of

hydrogen Ly-(x emission from comets Bradfield (1979 Y 1) and Austin ( 1989 X 1) which were

taken during the two most recent solar maximum periods, 1980 and 1989, with the International

Ultraviolet Explorer (IUE) satellite. IUE observations of hydrogen Ly-ct emission from comets



21P/Giacobini-Zinnerand 1P/Halley,madeduringthe 1985-1986solarminimum,andtheir

comparisonwithself-consistentlyanalyzedOH werefoundto be consistentwith thestandard

waterphotodissociationpicture.Thesemodelanalysesaccountedfor theimportantdetailed

physicalmechanisms:vectorialejection,thesolarLy- otlineprofile,partialcollisional

thermalizationof H atoms,andasphericalradiativetransfercalculationfor solarLy-c_resonance

scattering.Thevariationof thefar solarUV with solaractivity (includingLy-c0effectsthe

photochemistryof waterby changingboththeoverallphotochemicalratesandvariousbranching

ratios. In addition,thecometaryhydrogenLy-a brightnessis regulatedby theabsoluteflux and

theshapeof thesolarLy-o_lineprofilebecausecometsscatteronly aportionof thesolarlinewithin

anarrowrangeof wavelengthsDopplershiftedfrom linecenteraccordingto theheliocentric

velocityof thecomet.

II. IUE Observations

TheIUE spacecraft,its spectrographsandthestandardcalibrationandreductionhavebeen

discussedin detailby Weaveretal. ( 1981)andmorerecentlyby Budzienet al. (1994). Seealsoa

review articleby Feldman(1991). The hydrogenLyman-a emissionwas recorded in spectra

obtainedwith theshort wavelengthprimary(SWP) SEC vidiconcameraof IUE that covers the

spectralrangeof 1150-1950A. Themeasurementsof thecommonlyobserved(0-0)bandof OH at

-3090]k in cometswere obtainedusingthe long wavelengthprimary(LWP) camera. For comet

observationsthelargerentranceaperture(I 0 x 20 arcseconds)hasmostoftenbeenused.

ForcalculatingtheLy-et fluxeswe haveadoptedandautomatedtheprocedurewhich Harris

(1993)developedfor studyingtheJovianaurora. It accountsfor the long term degradationof the

detectornearthecenterof the largeapertureat Ly-_ causedby theyearsof burning-in by stellar

observations. Harris constructeda seriesof yearly flat-fields which were convolved with the

observedapertureimageon thespectralplane,beforeintegratingto calculatethetotal line flux. We

automatedhisgeneralsystemfor usein reducingthecometobservations.For this study we have

analyzedthenucleus-centeredobservationsof cometsBradfield(1979YI) and Austin (1989X 1).
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IUE observations for these comets have been discussed in primary publications by Weaver et al.

(1981)

III. Reduction of IUE Spectra to Lyman-ot Brightness and Calculation of

Water Production Rates

Work during this year has concentrated on model analysis of a set of Lyman-ot observations

made of comets during near solar maximum conditions. In contrast, the two previously published

works (Combi & Feldman 1992 & 1993), describing work performed under a previous ADP

grant, involved the analysis of extensive sets of observations made of two solar minimum comets,

P/Giacobini-Zinner and P/Halley during 1985 and 1986. In addition to simply analyzing the H

Lyman-ct data comparing solar activity effects was one of the major objectives of this program.

This analysis addresses other objectives, as mentioned in the Introduction. In order to perform a

model analysis of the Lyman-cz emission from a SWP IUE observation a rather lengthy many step

process is involved:

• 1. Obtain the spectra from the data archive: including comet and coordinating sky spectra,

• 2. Determine Lyman-ot flux from each spectrum,

• 3. Construct three sets of estimated time-dependent production curves for the comet (high,

medium and low production rate estimates),

• 4. Run three sets of hybrid hydrodynamic/Monte Carlo models for the time-variable coma

outflow conditions along the orbit (Combi 1989),

• 5. Run three time-dependent H coma Monte Carlo models for each observation date and extract

the H atom density profiles (Combi and Smyth 1988a; Combi and Feldman 1992)

• 6. Run three spherical radiative transfer calculations (Anderson and Hord 1977)

• 7. Run three IUE aperture line-of-sight integration calculation

• 8. Obtain and determine an appropriate solar Lyman-ot flux for the day in question at the solar-

rotation-corrected heliographic longitude of the comet
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• 9.Finally, from theobservedcometLyman-abrightness(lessthegeocorona"sky" contribution),

interpolatethebestwaterproductionratefrom thethreemodelestimates.

• I0. Performsteps3 through9 for bothsolaractiveandsolarquietconditions.

In orderto compilethesetof possibleSWPIUE observationsof comets,weuseda

combinationof thesummaryIUE publicationof Festou(1990)whichcoverscometobservations

throughthelate1980sandon-linesearchesof thearchive.TheCo-Investigator,PaulFeldman,

whowasinvolvedwith theacquisitionof manyof thesedata,helpedin obtainingmuchrequired

information. Afterexaminingtheentiredatasetwe foundthatfor quiteanumberof thefaint

cometsno separategeocoronasky observationsweremade.Thegeocoronaemissionvaries

intrinsicallywith time(from changesin thegeocoronaitselfandthesolarLyman-aflux), andwith

thepositionandpointingof theIUE spacecraftitself. Thetypical geocoronabrightnessison the

orderof 1000Rayleighs,butat anyparticulartimeanddependingon thezenithangleof the

observationstheactualvaluemayvaryby morethanfactorof 2 upor down. Therefore,if acomet

is intrinsicallyverybright(morethanseveraltensof kiloRayleighs)anestimationof thegeocorona

backgroundmaybequitereasonable.Someof thebrightcometobservationsarewell inexcessof

100kiloRayleighs. However,for faint cometsor for observingthecomaoffsetfrom thenucleus,

obtainingareasonablyaccurateassessmentof thegeocoronabrightnessbecomesmoreimportant.

For pastwork in determiningtheLyman-otbrightnessfrom aSWPspectrumweuseda

programin thecometanalysispackageat JohnsHopkins. SincethenDr. Walt Harris,of the

Univeristyof Wisconsin(formerly from theUniversityof Michigan),hascarefullystudieda

numberof aspectsof extractingLyman-etfluxesfrom observationsof extentedobjectsin

connectionwith hiswork (Harris 1993)on observationsof Jupiteraurorae.This includesthe

variationof thedetectorsensitivityacrossthelargeapertureandits degradationwith time. He

provideduswith fiat fieldsthathedeterminedfrom observationscoveringtheentirelifetimeof

IUE, aswell ashis IDL routinefor extractingLyman-abrightnessesfor Jupiterauroral

observations.We adaptedandautomatedhisprogramespeciallyfor cometobservations.Figure
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la showsaplot of the width integrated scan along the slit for the flat field (dashed line) and for an

observation of comet Bradfield (solid line) obtained February 13, 1980. Below this in Figure l b is

shown the integration along the length of the large aperture of the fiat-field corrected comet

emission. From this type of process SWP observations of comet and geocorona emission were

reduced to Lyman-ct brightnesses in Rayleighs.

Steps 3, 4 and 5 (above) are coordinated for a single comet, given its time history, either

from published IUE observations of OH or from other sources, usually groundbased OH or O( ID)

observations. Three sets of estimates for the production rate variation are made at high, low and

medium estimates for the gas production rate. The models were run for both the expected active

solar conditions, consistent with the recent OH model analysis of Budzien et al. (1994), and for

quiet solar conditions, in order to test the sensitivity of the extracted water production rates to

photochemical assumptions. The results from step 5 are H atom density profiles which are then

used as input to the radiative transfer calculation and line-of-sight IUE aperture integration (steps 6

and 8). The solar Lyman-o_ flux has been estimated from the on-line data base of F10.7 cm and/or

He 10830 A measurements (Cochran and Schleicher 1993).

Table 1 shows the compilation of the first part of the data analysis, the Lyman-tt fluxes

determined from the improved reduction procedure. For completeness we also include in this table

our reduction of some spectra of comet Wilson in 1987 and comet P/Encke in 1980. There were

no adequate geocorona measurements corresponding to either of these comet observations.

IV. The Effect of Solar Activity Variations on Water Production Rates

Calculated from H Lyman-a Observations

A major goal of the work in this project was to examine the effect if any of solar activity on

observational aspects of the production of cometary H and OH. It is clear from the results of

Budzien et al. (1994) and even those of Cochran and Schleicher (1993) that the inclusion of solar

activity dependent photochemical effects on the lifetime of water yields important differences on the

extracted water production rates extract from OH observations. To examine this effect in the H



observations we performed two complete sets of model calculations for the three levels (high,

medium and low) of water production rate and for every observation of comets Bradfield and

Austin: one including solar active photochemistry and the other including solar quiet

photocherrfistry. The details on the various reaction branching ratios, and by implication on the

OH and H velocity distributions were given in the original paper by Combi and Smyth (1988b),

and have been revised and made more general by Budzien et al. (1994). In Table 2 we summarize

the results for the three sets of model runs for each comet.

What is clear from the results is that over a range of heliocentric distances the assumption of

solar active or solar quiet conditions on the calculation of production rates from H Lyman-ct

measurements makes only a few percent difference. This is in stark contrast to the results of

Budzien et al. (1994) for OH who find that solar variations of 30% or more, depending on the

heliocentric distance and the real size (in km) of the IUE aperture. Similar sensitivity has been

discussed for ground-based obervations of OH (Cochran and Schleicher 1993; Schleicher et al.

1998). The important implication of this is that the extraction of water production rates from H

Lyman-tz observations is actually less sensitive to the assumptions of solar activity dependent

photochemistry than from OH observations. In hindsight, the reason for this is clear. Whereas in

most weak to moderately active comets, when OH is produced even with its appropriate velocity

(-1.05 kin/s) from a dissociating water molecule, the velocity distribution is still a fairly narrow

beam concentrated in the radially outward direction. H atoms on the other hand, even after one or

two collisions have a highly random and high-speed velocity distribution because they are

produced many with velocities of 8, to 18 to more than 20 km/s per second.

Therefore, whereas there is a severe reduction of the amount of OH relative to the parent H20

in the inner coma (r < 50,000 km) because it is still being produced there and the velocity remains

beamed radially, H atoms produced at even large distances are sprayed more isotropically even

back into the inner coma. This might have been predicted from previous results of earlier modeling

studies of the H coma (Combi and Feldman 1992, 1993), on the basis of the radial density
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distribution, which is not far from l/r 2 even at fairly small distances to the nucleus.

point is fairly subtle and hindsight is always more clear.

However, the

V. Water Production Rates for Comets Bradfield and Austin

The other major aspect of this work is the calculation of water production rates from

obsrvations of the H Lyman-o_ emission and the comparison of those determined from a reasonably

self-consistent analysis of IUE observations of OH. This is the same exercise we had performed

for the solar quiet comet P/Halley and P/Giacobini-Zinner (Combi and Feldman 1992 & 1993).

Table 3 shows the results of the extracted production rates from the H Lyman-o_ emission

compared with those calculation by Budzien et al. (1994) using nearly contemporaneous IUE

measurements of cometary OH using the LWP camera. In most cases we have obtained a more

complete set of these data directly from Dr. Budzien (private communication) than actually appear

in their published paper.

In addition to nucleus-centered obervations of comets Bradfield and Austin, a number of

offset observations were made. The brightness is obviously lower for offset observations,

compared with nucleus-centered, and generally yields a somewhat higher relative uncertainty

because of the large contribution of the subtracted geocorona brightness. However, extraction of

production rates from offset observations can be quite useful, because they could be sampling a

region of the coma where optical depth effects are much lower, and therefore the inversion process

with the model is more nearly linear, reducing somewhat the uncertainty. In Table 3, production

rates extracted from offset observations are marked with the footnote (c).

As discussed in the Introduction, if any systematic difference in comparing water production

rates from OH and H should appear, one might conclude that it would be for the 1980 solar

maximum, but not the 1990 solar maximum. This again is based on the 14-years of IUE

observations H Lyman-cx at Jupiuter and Saturn (McGrath & Clarke 1992). Examination of the

1980 results for comet Bradfield indicates similar levels of differences between water production

rates from H (ours) and OH (Budzien et al. 1994) as we had found for the solar minimum comets
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Halley and Giacobini-Zinner. However, the differences are generally evenly split in either

direction. If we were to see the effect cites by McGrath and Clarke we would expect to get

systematically too large production from H observations because the solar Lyman-a flux in the

center of the line might be larger because of the filled-in profile. This seems not to be the case.

The agreement for comet Austin is quite good. Therefore, we would conclude based on our stude

of solar active comets that for the purpose of determining water production rates from H Lyman-a

observations that the use of the daily solar Lyman-ot flux corrected for rotation in combination with

the line profile shape of Lemairre et al. is quite adequate.

VI. Summary and Future Work in this Area

We have presented a study of the effects of solar activity on the observations and analysis of

H Lyman-a observations obtained with IUE of comets Bradfield and Austin during the 1980 and

1990 solar maximum periods, respectively. We have compared alternative analyses of these

comets with solar active and solar quite conditions, and have compared the solar active results with

nearly contemporaneous IUE observations of OH. Our major conclusions are as follows. (1) The

distribution of cometary hydrogen in the inner coma is not very sensitive to the details of the water

photochemistry. This is in contrast with the extraction of water production rates from OH

observations which are quite sensitive to the adopted values of the photochemical lifetimes. The

cause of this lack of model sensitivity is undoubtedly due to the fact that most of the hydrogen is

produced with large velocity (compared to the water outflow speed), thereby spraying H atoms

uniformly and even back into the source region. The OH radical's "vectorial" velocity is

comparable to the outflow speed and thermalization of that suprathermal component is more

efficient than for H at larger distances from the nucleus. This is due in part to the small mass of the

H compared with OH. (2) The comparison of water production rates from H and OH in comets

Bradfield and Austin shows no systematic difference between the two solar maximum periods.

Therefore, we do not see any evidence in the comet observations for a different structure for the
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central region of the solar Lyman-c_ line as has been suggested by McGrath and Clarke (1992). (3)

Finally, we believe that our results for H Lyman-a observations in four comets with IUE, and with

other comets using other instruments, indicates that observations of H Lyman-a can serve as a

useful indicator of water production in comets provided that the observations are analyzed with a

model which includes all of the important physics and chemistry and that intercomparisons are

made with other observations (OH, for example) which are analyzed with self-consistent models

and model parameters.

Although the project is formally ended, we are continuing in an unsupported mode to

formally present these results to the scientific community. These results will be presented at the

1998 Division for Planetary Sciences meeting to be held in Madison, Wisconsin, October 12-16,

1998. An abstract has been submitted (Reinhard, Combi and Feldman 1998) which will be

published in the Bulletin of the A.A.S. A copy of the abstract is attached at the end of this report.

Preparation of a formal publication is already underway and will be submitted to Icarus for

publication by the end of the calendar year, to complete the set including our previous papers

(Combi and Feldman 1992 & 1993) which were published there.

As a final comment, IUE has made great contributions to cometary science during its very

useful and fruitful lifetime. It is a real shame that operation could not have been continued at least

through the full recent aparition of comet Hale-Bopp (1995 O 1), the comet of the century.
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Table 1. IUE Lyman-_ Brightness Reduced with the Harris Algorithm

Date Spectrum/File Brightness

(kiloRayleighs)

Comet Bradfield

01/11/80 swp07628slg 165.300

swp07630slg 154.400

01/16/80 swp07670slg 133.100

01/24/80 swp07758slg 29.000

swpO7759slg 31.100

swpO7760slg 31.900

swp07761 slg 31.200

swpO7763slg 51.100

01/25/80 swpO7764slg 2.830

swpO7765slg 4.054

01/31/80 swpO7820slg 36.100

swp07821 slg 5.433

swpO7822slg 6.018

swp07823slg 6.526

swp07824slg 3.900

02/07/80 swpO7885slg 15.740

swp07886slg 1.114

swpO7887slg 5.974

02/13/80 swp07939slg 8.117

02/21/80 swpO7997slg 3.593

03/03/80 swp08157slg 1.904
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12/29/89

05/11/90

05/13/90

05/16/90

Comet Austin

swp37919slg

swp38773slg

swp38781 slg

swp38800slg

swp38801slg

0.543

63.414

59.872

12.938

10.437

11/03/80

11/05/80

Comet P/Encke

swplO529slg

swp10546slg

1.621

6.434

11/08/86

3/28/87

3/29/87

4/03/87

4/10/87

4/11/87

4/22/87

5/05/87

5/12/87

5/26/87

6/08/87

Comet Wilson

swp29407

swp60640

swp30641

swp30698

swp30754

swp30755

swp30842

swp30918

swp30961

swp31049

swp31124

0.848

13.095

8.484

20.047

21.338

3.479

21.560

21.285

6.045

13.169

10.403
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Table 2. Effect of Solar Dependent Photochemistry on H Lyman-cx

Comet Bradfield

Solar Active Conditions

date low Q medium Q high Q

1/11/80 168.7 178.0 184.7

1/16/80 116.2 125.0 134.2

1/24/80 80.19 90.14 96.23

1/31/80 46.67 58.29 66.82

2/07/80 23.20 29.91 35.76

2113/80 12.55 16.86 20.92

Solar Quiet Conditions

date low Q medium Q high Q

1/11/80 165.5 176.5 183.7

1/16/80 113.8 123.0 132.5

1/24/80 78.17 88.45 94.04

1/31/80 43.09 55.69 63.92

2/07/80 21.33 28.24 33.27

2/13/80 11.575 15.52 19.28
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Table 2. (continued)

date low Q

5/11/90 57.79

5/13/90 48.46

5/16/90 38.80

date low Q

5/11/90 52.88

5/13/90 44.17

5/16/90 35.80

Comet Austin

Solar Active Conditions

medium Q

71.44

59.84

51.52

Solar Quiet Conditions

medium Q

66.72

56.86

48.06

high Q

79.85

67.68

58.88

high Q

75.57

65.50

55.15
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Table 3. Comparison of Water Production Rates from IUE H and OH

r (AU) D (AU) Q (OH) a Q(H) b

Comet Bradfield

0.72 0.60 1.53 x 10 29

0.80 0.41 7.8 X 10 2s

0.93 0.20 4.3 x 102s

1.03 0.29 2.9 x 102s

2.8 x 10 28

1.15 0.53 1.72 x 102s

1.25 0.76 1.18 x 10zs

1.56 1.48 0.22 x 102s

1.35 x 10 z9

6.0 x 102s

2.4 x 102s

c3.9 x 10 2g

c 4.1 x 10 zs

3.9 x 10 z8

3.8 x 10 zs

c 4.6 x 1028

5.4 x 1028

6.2 x 102s

2.1 x 10 z8

0.96 x 102s

.84 .42

.88 .38

.92 .35

.98 .30

Comet Austin

1 1.2 x 10 28

9.1 x 10 2s

7.0 x 10 2s

7.6 x 102s

9.9 x 102s

5.0 x 102s
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Notes to Table 3

a. Water Production rates from OH observations by Budzien et al. (1994)

b. Water production rates from H Ly-(x observations, this study.

c. Data marked with footnote c were obtained from measurements offset from the nucleus.
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Figure 1. Calculation of Integrated H Lyman-a fluxes from the IUE large aperture observations. The solid line in

the top plot is the spatial profile along the long axis of the IUE large aperture of a comet observation (Comet

Bradfield on February 13, 1980). The dashed line is the spatial profile of the flat field. In the bottom plot is the

integrated comet profile corrected for the flat field deviations. The fiat field deviations have become worse of the

years because of continual observation of bright point source objects near the center of the large aperture.
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